P.13 Half Life Analogy

Purpose

- To use a string of licorice as an analogy of radioactive decay.
- ✓ To show graphically how the length of licorice changes with each half-life.

Materials:

one string of licorice one meter stick

Procedure:

- 1. Prepare a data chart with two headings:

 Number of Half-Lives and Length of Licorice
 (cm).
- 2. Obtain a string of licorice. Measure the string to the nearest 0.1 cm. Record the length.
- Fold the licorice in half. Eat one half and measure the other half to the nearest 0.1 cm. Record the length.
- 4. Repeat step 3 as many times as possible.
- 5. Graph your data.

Questions:

- 1. Radioisotopes are considered to be safe after decaying for 10 half-lives. Were you able to "decay" your licorice to a safe level? Explain.
- 2. Using the half-life equation, what length of licorice would be left after 10 half-lives if you started initially with 100.0 cm of licorice?

LAR

P.13 Half Life Analogy

Purpose:

- To use a string of licorice as an analogy of radioactive decay.
- ✓ To show graphically how the length of licorice changes with each half-life.

Materials:

one string of licorice one meter stick

Procedure:

- 1. Prepare a data chart with two headings:

 Number of Half-Lives and Length of Licorice
 (cm).
- 2. Obtain a string of licorice. Measure the string to the nearest 0.1 cm. Record the length.
- 3. Fold the licorice in half. Eat one half and measure the other half to the nearest 0.1 cm. Record the length.
- 4. Repeat step 3 as many times as possible.
- 5. Graph your data.

Questions:

- 1. Radioisotopes are considered to be safe after decaying for 10 half-lives. Were you able to "decay" your licorice to a safe level? Explain.
- 2. Using the half-life equation, what length of licorice would be left after 10 half-lives if you started initially with 100.0 cm of licorice?

